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In this letter, a low-cost, procedurally simple, and environ-
mentally friendly strategy has been developed for in situ
electrodeposition of FePt nanoparticles on L-cysteine-modified
gold electrode surfaces. The as-prepared 20 nm FePt nano-
particles show high activity toward ORR, which is comparable
with that of commercial Pt catalyst. In addition, the electro-
deposited FePt nanoparticles exhibit relatively long-term
stability, possibly because the alloyed Fe may prevent the
dissolution of small Pt nanoparticles in the ORR.

Polymer electrolyte fuel cells (PEFCs) have attracted lots of
interest as a sustainable power source for transport, stationary,
and portable applications because of their high efficiency and
low emissions. A large amount of effort has been devoted to
development of efficient cathodic electrocatalysts, because a
sluggish oxygen reduction reaction (ORR) causes a large
overpotential at low temperatures.16 To date, the best materials
for the ORR catalysis are still platinum or its alloys. Recently,
enhanced ORR activities have been widely reported by using
Pt alloys, such as FePt, CoPt, and NiPt.79 We have also
successfully produced amorphous FeNiPt nanostructures and
developed electrocatalysis.10 Recently, nanoalloy catalysts have
been synthesized by various chemical methods and then
confined onto electrode surfaces by organic agents such as
Nafion to stabilize the nanoparticles. In contrast with all the
physical deposition processes, electrochemical deposition offers
a unique way for in situ generating alloy nanoparticles directly
onto electrode surfaces with long-term stability. In this letter, a
low-cost, facile, and environmentally friendly strategy has been
developed for in situ fabrication of Pt nanoalloys. As a model of
Pt nanoalloys, ca. 20 nm FePt alloyed nanoparticles have been
successfully electrodeposited by chronoamperometry onto L-
cysteine (Cys)-modified gold electrode surfaces. Experimental
results revealed that the FePt nanoparticles can lower the OH
coverage on Pt and subsequently improve both activity and
stability of electrocatalyst for O2 reduction.

Dihydrogen hexachloroplatinate (H2PtCl6¢6H2O, 99%) and
L-cysteine (Cys, C3H7NSO2, 99%) were purchased from Alfa
Aesar. Iron(II) chloride (FeCl2¢4H2O, 98%) was purchased from
Sinopharm Chemical Reagent Co., Ltd. Pt reference catalysts
for fuel cells with a diameter of 2.5 nm were purchased from
E-TEK. Nafion solution (5wt%) was received from Sigma and
diluted with ethanol. Indium tin oxide (ITO)-coated glass plates
with a square resistance of ca. 10³ cm¹2 were purchased from
Shenzhen Nanbo Display Technology Co.

A gold disk electrode (1.6mm in diameter) was first
polished with alumina slurries and then cleaned by sonication in
Milli-Q water. Then the electrode was modified with Cys by
immersing into an aqueous solution of 0.2mM Cys for ca.
30min at room temperature. The Cys-modified gold electrode

was immersed into a mixed solution of FeCl2¢4H2O (2.5mM)
and H2PtCl6¢6H2O (2.5mM). The present FePt nanoparticles
were electrodeposited by chronoamperometry with first scan
stepping from 0.8 to ¹0.3V, followed by the second scan from
0.8 to ¹0.4V, and then from 0.8 to ¹0.5V, 0.8 to ¹0.55V, 0.8 to
¹0.6V, 0.8 to ¹0.7V, 0.8 to ¹0.75V, and last scan from 0.8 to
¹0.8V, in turn, with pulse width of 5 s. The Pt/Fe atom ratio
was optimized as ca. 86/14.

The morphology was characterized by using a scanning
electron microscope (SEM) Quanta 200 FEG (FEI Co.). X-ray
photoelectron spectroscopy (XPS) experiments were carried out
on a RBD upgraded PHI-5000C ESCA system (Perkin-Elmer)
with MgK¡ radiation (h¯ = 1253.6 eV). Binding energies were
calibrated by using the containment carbon (C1s = 284.6 eV).
An ITO glass plate was electrodeposited with gold and
employed as substrate for the above characterizations.

Before recording the voltammograms, the modified elec-
trode surface was cleaned in N2-saturated 0.5M H2SO4 by
cycling between ¹0.2 and 1.3V (vs. Ag«AgCl) until steady
cyclic voltammograms (CVs) were observed. Cyclic voltamme-
try and rotating disk voltammetry were performed using a
computer-controlled CHI 760 electrochemical workstation (CH
Instrument Co.) and an adjustable speed rotator (Pine Instrument
Co.). The electrochemical surface area (ECSA) was calculated
by integrating the area under the curve in the hydrogen
adsorption range between 0.05 and 0.4V for the backward
sweep in the CV. All oxygen reduction reaction (ORR) tests
were conducted at ambient room temperature.

Figure 1A shows SEM image of the as-prepared FePt
nanoparticles. A good distribution of ca. 20 nm spherical
particles over the gold substrate was observed. XPS spectra
for the FePt nanostructures are also depicted in Figures 1B1D,
in which the numbers of emitted photoelectrons are given as
a function of binding energy up to 1100 eV. As shown in
Figure 1B, four photoemission peaks were clearly observed for
Fe2p, Pt4f, C1s, and O1s, while the emission from the inelastic
collisions of photoelectrons gave rise to a general background.
Two sharp peaks located at ca. 71.2 and ca. 74.6 eV, as shown
in Figure 1C, were ascribed to the spinorbit splitting of 4f7/2
and 4f5/2 for magnified Pt4f. The spinorbit doublet splitting
value of the 4f core level estimated to be ca. 3.4 eV,
corresponding to the difference of binding energies (BE)
between 4f7/2 and 4f5/2, indicates that metallic Pt is dominant
in the PtFe nanostructures.11 As demonstrated in Figure 1D,
two peaks located at ca. 706.8 and ca. 720.1 eV owing to the
spinorbit doublet splitting of 2p3/2 and 2p1/2 were in an
agreement with the values reported previously for metallic Fe,
although Fe is easy to be partly oxidized and the feature peak of
Fe becomes broad.12 Thus, we can conclude that not only Pt but
also Fe are reduced and both metals are in their metallic state in
the PtFe nanostructures.
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The hydrodynamic voltammograms for the ORR were
obtained at the electrode in O2-saturated 0.5M H2SO4 solution at
a potential scan rate of 50mV s¹1, as shown in Figure 2A. From
the voltammograms, the limiting current densities (JL) were
plotted as a function of ½1/2 and given in the inset of Figure 2A.
The experimental values fall on a straight line passing through
the origin, suggesting that the reaction is controlled by the
diffusion of O2 to the electrode surface. According to Levich
equation, the number of electrons involved in the O2 reduction
was calculated to be 4.13 The slope of the experimental line was
obtained as 0.395mAcm¹2 (rad s¹1)1/2 which is consistent with
that of the theoretical line for n = 4 (0.40mAcm¹2 (rad s¹1)1/2),
confirming that the ORR at the alloy electrode proceeds through
a four-electron pathway. The area-specific current density (JK),
which represents the intrinsic activity of the catalysts, was
calculated using KouteckyLevich equation.
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As shown in Figure 2B, JK was estimated to be 1855¯Acm¹2

at 0.75V for the FePt nanoparticles, which is a little larger
than that for the commercial Pt catalyst (ca. 1300¯Acm¹2),14,15

and is comparable with those at Pt-on-Pd alloy16 and Pt3Co
nanostructures.14

In order to find the origin of the ORR enhancement by using
FePt nanoparticles, CVs of FePt nanoparticles and commercial
Pt nanoparticles were measured in H2SO4 solution under N2

bubbling. The CV peak associated with the formation of
oxygenated adsorbates (0.80.9V) at the low-cost FePt surface
showed a comparable potential with that at commercial Pt
nanoparticle surface. The increased electronic interaction of O2

with the bimetallic electrode surface promotes the adsorption of

O2 molecules, and thus may facilitate the rupture of the bonds in
O2 resulting in an increase of the ORR activity.

The stability of the in situ prepared FePt catalyst was
evaluated by applying linear potential sweeps between 0.6 and
1.0V as previously reported.16 Figure 3 shows CVs obtained at
(A) commercial Pt nanoparticles and (B) FePt nanoalloys before
(a) and after (b) 30000 cycles scanned in H2SO4. The electro-
chemical surface area (ECSA) was calculated by integrating the
area under curve in the hydrogen adsorption range between 0.05
and 0.4V for the backward sweep in the CV. The commercial Pt
nanoparticles lost ca. 26% of the initial ECSA and showed a
large decrease of 29mV in the half-wave potential after 30000
cycles. However, the FePt nanoparticles were observed to be
quite stable with a loss of only ca. 14% initial ECSA and a small
degradation of 11mV in the half-wave potential after the same
examination. More importantly, the shape of CV obtained at
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Figure 1. (A) SEM image of FePt nanoparticles. X-ray
photoelectron spectra (B) for FePt nanoparticles, (C) for Pt in
FePt nanoparticles, and (D) for Fe in FePt nanoparticles. The
horizontal axes represent the binding energy corrected by that of
C1s.
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Figure 2. (A) Hydrodynamic voltammograms obtained at the
FePt rotated disk electrode (RDE) in O2-saturated 0.5M H2SO4

solution. Specified rotating rates: (a) 1200, (b) 1500, (c) 1800,
(d) 2100, and (e) 2400 rpm. Inset: Levich plot for the ORR at the
RDE in O2-saturated 0.5M H2SO4 solution. The values of JD
were obtained from the voltammograms shown in Figure 2A.
The solid circles represent the experimental values while the
dotted lines correspond to the theoretically predicted lines for
four electron reductions of O2. (B) Tafel plot of kinetically
controlled ORR currents obtained at the FePt nanoparticles with
rotating rate of 1200 rpm.
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commercial Pt nanoparticles greatly changed, compared with
that at FePt nanoparticles, suggesting that Pt nanocatalysts were
easier to be poisonous and lost more electrocatalytic activity
than FePt nanoparticles. The developed electrocatalytic stability
may be ascribed to the Fe alloyed with Pt catalyst, which
prevents the poisoning and dissolution of small Pt nanoparticles
in the ORR process.

FePt alloyed nanoparticles have been successfully prepared
by a low-cost and procedurally simple in situ electrodeposited
strategy. Electrochemical measurements indicate that the as-

prepared FePt nanoparticles exhibit comparable ORR catalytic
activity to commercial Pt nanoparticles, because the increased
electronic interaction of O2 molecule with the bimetallic
electrode surface promotes the adsorption of O2 molecules and
thus facilitates the rupture of the bonds in O2 molecule resulting
in an increase of the ORR activity. In addition, the alloyed
metallic Fe may prevent dissolution of the small Pt nanoparticles
in the ORR, thus the present catalyst shows a long-term stability.
This investigation opens up a novel way to designing and
developing an in situ electrodeposited method for preparation of
fuel cell catalysts with both excellent activity and stability.
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Figure 3. CVs in 0.5M H2SO4 solution at scan rate of
100mV s¹1 for (A) Pt catalyst and (B) FePt nanocatalyst before
(a) and after (b) 30000 cycles.
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